Logistic Regression: What is it and What can I learn from it?

Melodie Rush Senior Systems Engineer

CUSTOMER LOYALTY TEAM • Support You Can Count On

THE POWER TO KNOW:

Agenda

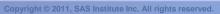
- Why would you use it?
 - Goal
 - Application
- What is Logistic Regression?
- Examples
 - Data layout
 - Simple
 - Multiple

2

CUSTOMER LOYALTY TEAM · Support You Can Count On

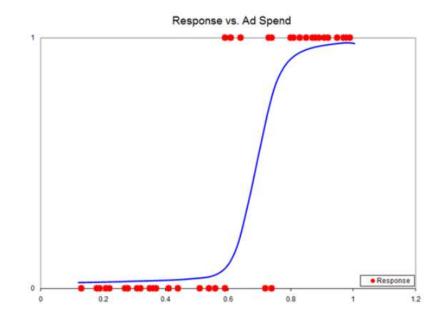
What is our goal?

CUSTOMER LOYALTY TEAM • Support You Can Count On



Common Applications

- Target Marketing
- Attrition Prediction
- Credit Scoring
- Fraud Detection
- Customer Satisfaction



CUSTOMER LOYALTY TEAM · Support You Can Count On

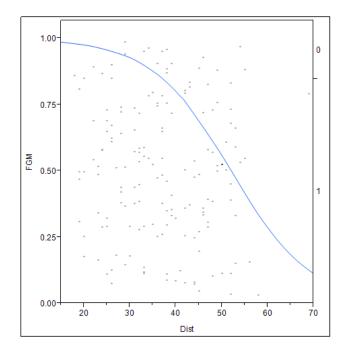
Good or No Good?

CUSTOMER LOYALTY TEAM • Support You Can Count On

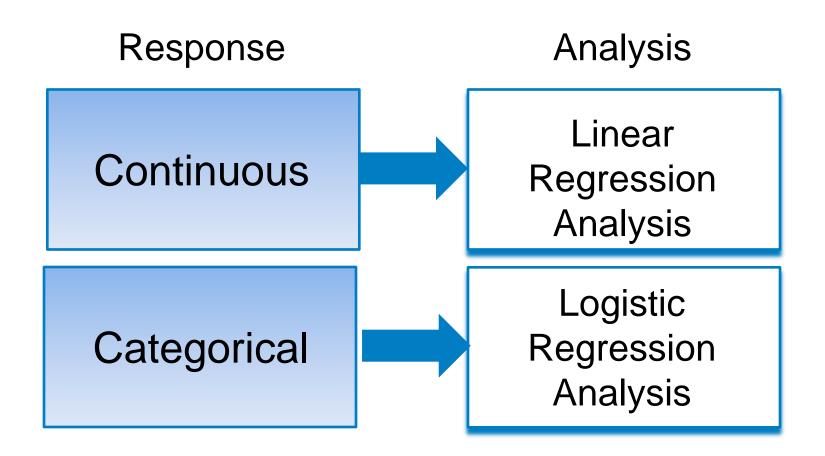
5

What is Logistic Regression?

Logistic Regression is essentially a regression model tailored to fit a categorical dependent variable.



CUSTOMER LOYALTY TEAM • Support You Can Count On



CUSTOMER LOYALTY TEAM • Support You Can Count On

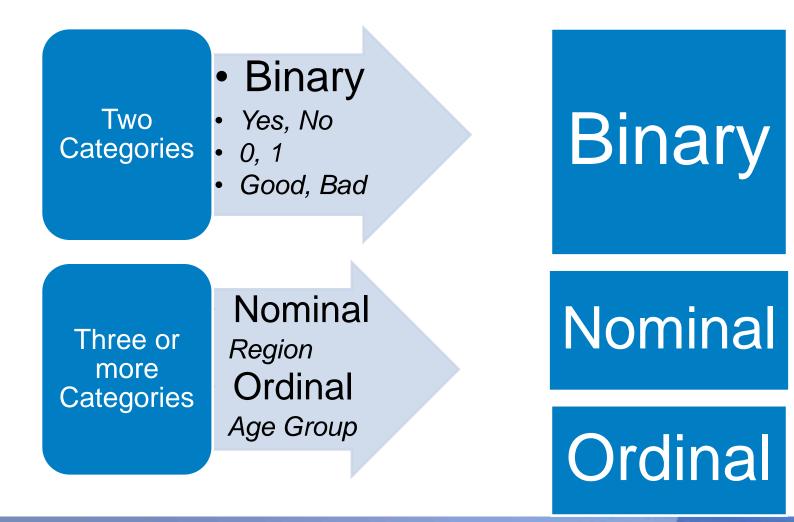
Copyright © 2011, SAS Institute Inc. All rights reserved.

8

POWER TO KNOW

Types of Logistic Regression

Response Variable



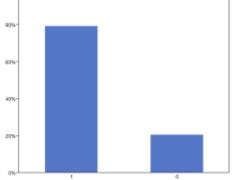
CUSTOMER LOYALTY TEAM . Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

Type of Logistic Regression

Why not use Regression (OLS)?

- Biggest issue is that the predicted values will take on values that have no meaning to your response
- Added mathematical inconvenience of not being able to assume normality and constant variance with the response variable that has only 2 values



CUSTOMER LOYALTY TEAM

Support You Can Count On

Logistic Regression Model

$$logit(p_i) = \beta_0 + \beta_1 X_{1i} + \ldots + \beta_k X_{ki}$$

Where

- Iogit (p_i)=logit of the probability of the event
- β_0 = intercept of the regression equation
- β_k = parameter estimate of the kth predictor variable

 $logit(p_i) = log(p_i / (1-p_i))$

CUSTOMER LOYALTY TEAM · Support You Can Count On

Mason Crosby's Career Field Goal Statistics

FIELD G	FIELD GOAL KICKERS																						
				0	verall	FGs		20	-29 \	/ards	зс)-39 \	Yards		40-4 Yarı		50	0+ Yi	ards		PA	т	
Year	Team	G	Blk	Lng	FGM	FG Att	Pct	м	Att	Pct	м	Att	Pct	м	Att	Pct	м	Att	Pct	XP Att	XPM	Pct	Blk
2011	Green Bay Packers	16	0	58	24	28	85.7	4	5	80.0	14	14	100.0	3	5	60.0	2	3	66.7	<mark>6</mark> 9	68	98.6	1
2010	Green Bay Packers	16	2	56	22	28	78.6	7	8	87.5	4	5	80.0	8	10	80.0	2	4	50.0	46	46	100.0	0
2009	Green Bay Packers	16	0	52	27	36	75.0	13	13	100.0	7	9	77.8	4	7	57.1	2	6	33.3	49	48	98.0	0
2008	Green Bay Packers	16	2	53	27	34	79.4	8	8	100.0	10	13	76.9	5	6	83.3	3	6	50.0	46	46	100.0	0
2007	Green Bay Packers	16	1	53	31	39	79.5	8	8	100.0	10	11	90.9	9	14	64.3	3	5	60.0	48	48	100.0	0
	тота	L 80	5	58	131	165	79.4	40	42	95.2	45	52	86.5	29	42	69.0	12	24	50.0	258	256	99.2	1

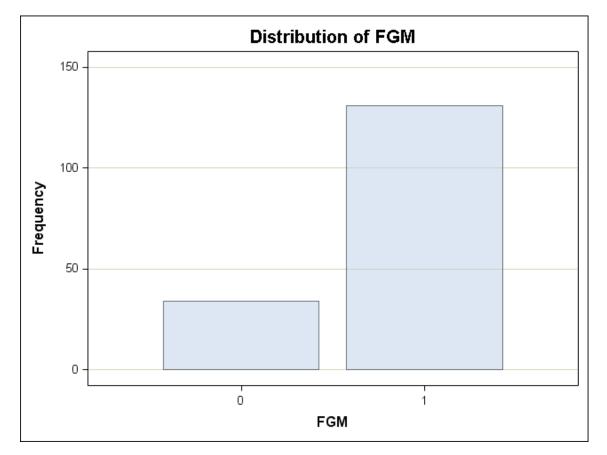
Mason Crosby #2 K

Green Bay Packers | Official Team Site Height: 6-1 Weight: 207 Age: 27 Born: 9/3/1984 Lubbock , TX College: Colorado Experience: 6th season High School: Georgetown HS [TX]

CUSTOMER LOYALTY TEAM • Support You Can Count On

Mason Crosby's Career Field Goal Statistics

FGM	Frequency		Cumulative Frequency	
0	34	20.61	34	20.61
1	131	79.39	165	100.00



CUSTOMER LOYALTY TEAM · Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

What might determine a successful field goal?

CUSTOMER LOYALTY TEAM · Support You Can Count On

Copyright © 2011, SAS Institute Inc. All rights reserved.

PROC LOGISTIC Data for Simple Model Continuous Predictor

Mason Crosby's Field Goals (first 10)

Row number	Year	G#	Орр	FGM	Dist
1	2007	1	PHI	1	53
2	2007	1	PHI	1	37
3	2007	1	PHI	1	42
4	2007	2	NYG	0	42
5	2007	3	SDG	1	28
6	2007	4	MIN	1	28
7	2007	4	MIN	1	44
8	2007	4	MIN	1	33
9	2007	5	CHI	1	37
10	2007	5	CHI	1	37

Y = FGM (Field Goals Made) X = Dist (Distance)

CUSTOMER LOYALTY TEAM • Support You Can Count On

PROC LOGISTIC syntax

PROC LOGISTIC <options>; CLASS variable</v-options>; MODEL response=<effects></options>; ODDSRATIO <'label'> variable </ options>; ROC <'label'> <specification> </ options>; ROCCONTRAST <'label'><contrast></ options>; SCORE <options>; UNITS predictor1=list1 </option>; OUTPUT <OUT=SAS-data-set> keyword=name... keyword=name></option>;

RUN;

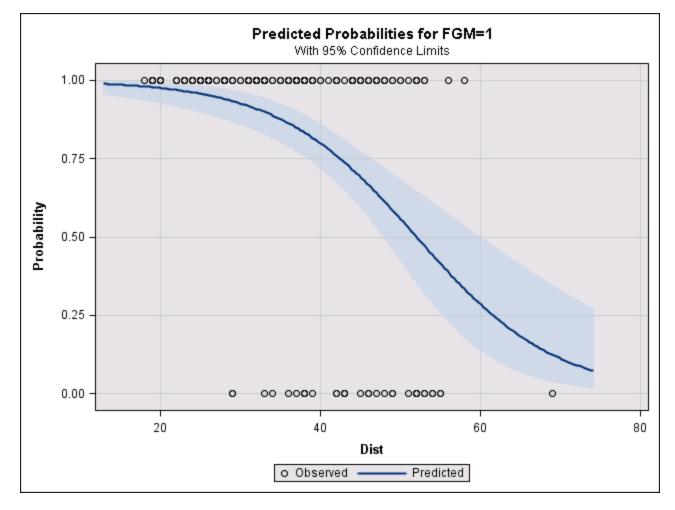
CUSTOMER LOYALTY TEAM • Support You Can Count On

PROC LOGISTIC Code for Simple Model Continuous Predictor

PROC LOGISTIC DATA=WORK.Crosby_FG; MODEL FGM (Event = '1')=Dist/ RUN;

CUSTOMER LOYALTY TEAM · Support You Can Count On

PROC LOGISTIC Output for Simple Model Continuous Predictor



CUSTOMER LOYALTY TEAM • Support You Can Count On

PROC LOGISTIC Output for Simple Model Continuous Predictor

A	Analysis of Maximum Likelihood Estimates											
Parameter	DF	Estimate	Standard Error	Pr > ChiSq								
Intercept	1	5.9895	1.0702	31.3223	<.0001							
Dist	1	-0.1151	0.0244	22.1837	<.0001							

	Odds Ratio Estimates										
Effect	Point Estimate	95% Wald Confidence Limits									
Dist	0.891	0.850	0.935								

CUSTOMER LOYALTY TEAM · Support You Can Count On

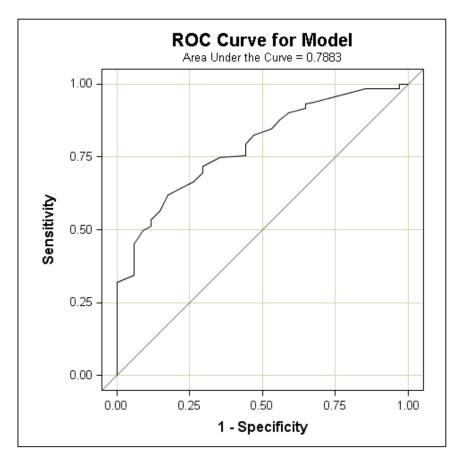
Copyright © 2011, SAS Institute Inc. All rights reserved.

PROC LOGISTIC Output for Simple Model Continuous Predictor

Is the model any good?

Association of Predicted Probabilities and Observed Responses									
Percent Concordant 77.7 Somers' D 0.577									
Percent Discordant	20.0	Gamma	0.590						
Percent Tied	2.2	Tau-a	0.190						
Pairs	4454	c	0.788						

- Counting concordant, discordant, and tied pairs is a way to assess how well the model predicts its own data and therefore how well the model fits
- In general, you want a high percentage of concordant pairs and low percentages of discordant and tied pairs



Closer the area under the curve is to 1 the better the model, the closer to 0.5 the worse the model.

PROC LOGISTIC Data for Simple Model Categorical Predictor

Mason Crosby's Field Goals (first 10)

Row number	Year	G#	Орр	FGM	Dist	Distance Grouped
1	2007	1	PHI	1	53	4. >= 50 yards
2	2007	1	PHI	1	37	2. 30-39 yards
3	2007	1	PHI	1	42	3. 40-49 yards
4	2007	2	NYG	0	42	3. 40-49 yards
5	2007	3	SDG	1	28	1. < 20 yards
6	2007	4	MIN	1	28	1. < 20 yards
7	2007	4	MIN	1	44	3. 40-49 yards
8	2007	4	MIN	1	33	2. 30-39 yards
9	2007	5	CHI	1	37	2. 30-39 yards
10	2007	5	CHI	1	37	2. 30-39 yards

Y = FGM (Field Goals Made) X = Dist_grp (Distance Grouped)

CUSTOMER LOYALTY TEAM · Support You Can Count On

PROC LOGISTIC Code for Simple Model – Categorical Predictor Create Categorical Variable

(CASE

WHEN t1.Dist <= 29 THEN '1. < 29 yards'

WHEN t1.Dist >= 30 AND t1.Dist <= 39 THEN '2. 30-39 yards'

WHEN t1.Dist >= 40 AND t1.Dist <= 49 THEN '3. 40-49 yards'

WHEN t1.Dist >= **50** THEN **'4. >= 50 yards'**

ELSE t1.Dist

END)

LABEL="Distance Grouped" AS Dist_Grp

PROC LOGISTIC Code for Simple Model Categorical Predictor

PROC LOGISTIC DATA=WORK.Crosby_FG;

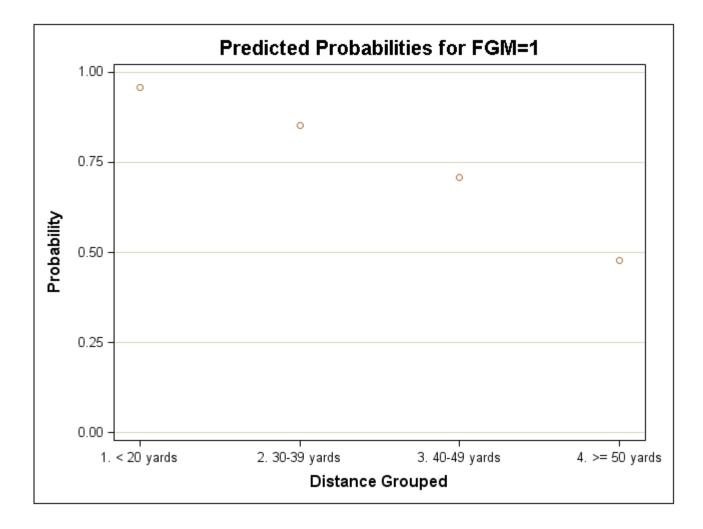
CLASS Dist_Grp(PARAM=EFFECT);

MODEL FGM (Event = '1')=Dist_Grp;

RUN;

CUSTOMER LOYALTY TEAM • Support You Can Count On

PROC LOGISTIC Output for Simple Model Categorical Predictor



CUSTOMER LOYALTY TEAM • Support You Can Count On Copyright © 2011, SAS Institute Inc. All rights reserved.

PROC LOGISTIC Code for Simple Model Categorical Predictor

Type 3 Analysis of Effects										
Effect	DF	Wald Chi-Square	Pr > ChiSq							
Dist_Grp	3	19.1176	0.0003							

Odds Ratio Estimates										
Effect	Point Estimate		95% Wald fidence Limits							
Dist_Grp 1. < 20 yards vs 4. >= 50 yards	24.542	4.782	125.962							
Dist_Grp 2. 30-39 yards vs 4. >= 50 yards	6.273	2.066	19.042							
Dist_Grp 3. 40-49 yards vs 4. >= 50 yards	2.636	0.914	7.604							

	Analysis of Maximum Likelihood Estimates											
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq						
Intercept		1	1.4145	0.2451	33.3132	<.0001						
Dist_Grp	1. < 20 yards	1	1.6989	0.5667	8.9875	0.0027						
Dist_Grp	2. 30-39 yards	1	0.3347	0.3653	0.8396	0.3595						
Dist_Grp	3. 40-49 yards	1	-0.5321	0.3449	2.3799	0.1229						

CUSTOMER LOYALTY TEAM · Support You Can Count On

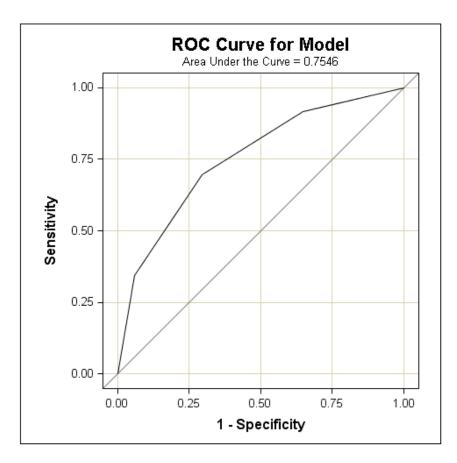
29

PROC LOGISTIC Output for Simple Model Categorical Predictor

Is the model any good?

Association of Predicted Probabilities and Observed Responses									
Percent Concordant 64.9 Somers' D 0.509									
Percent Discordant	14.0	Gamma	0.645						
Percent Tied	21.1	Tau-a	0.168						
Pairs	4454	c	0.755						

Better or worse than the Continuous Model?



CUSTOMER LOYALTY TEAM • Support You Can Count On

PROC LOGISTIC Data for Multiple Model

Mason Crosby's Field Goals (first 10)

Row number	Year	G#	Орр	Quarter	FGM	Dist	Win or Loss	Home or Away
1	2007	1	PHI	1	1	53	W	Home
2	2007	1	PHI	3	1	37	W	Home
3	2007	1	PHI	4	1	42	W	Home
4	2007	2	NYG	1	0	42	W	Home
5	2007	3	SDG	1	1	28	W	Home
6	2007	4	MIN	2	1	28	W	Away
7	2007	4	MIN	3	1	44	W	Away
8	2007	4	MIN	4	1	33	W	Away
9	2007	5	CHI	2	1	37	L	Home
10	2007	5	CHI	3	1	37	L	Home

- Y = FGM (Field Goals Made)
- X = Dist (Distance)

Year, Quarter, Win or Loss, Home or Away

PROC LOGISTIC Code for Multiple Model

PROC LOGISTIC DATA=WORK.Crosby_FG;

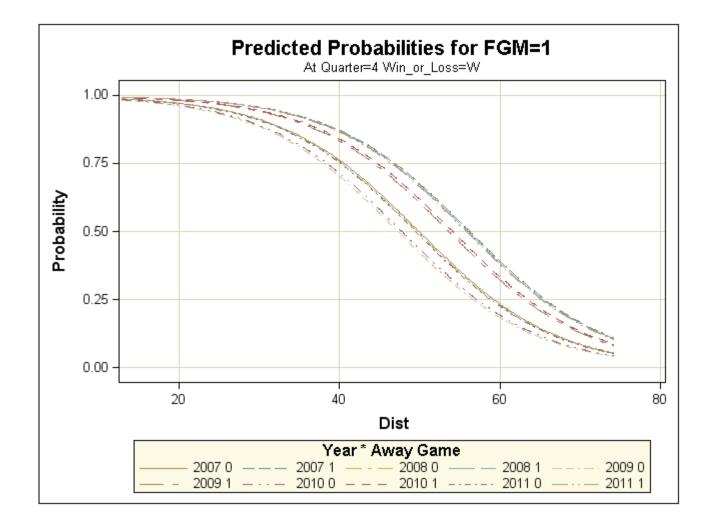
CLASS Year Away_Game Quarter Win_or_Loss;

MODEL FGM (Event = '1')=Dist Year Away_Game Quarter Win_or_Loss ;

RUN;

CUSTOMER LOYALTY TEAM · Support You Can Count On

PROC LOGISTIC Output for Multiple Model



CUSTOMER LOYALTY TEAM • Support You Can Count On

PROC LOGISTIC Code for Multiple Model

Type 3 Analysis of Effects						
Effect	DF	Wald Chi-Square	Pr > ChiSq			
Dist	1	21.7870	<.0001			
Year	4	0.3372	0.9873			
Quarter	3	0.8702	0.8326			
Win_or_Loss	1	0.0111	0.9162			
Home_Away	1	2.4610	0.1167			

Odds Ratio Estimates					
Effect	Point Estimate	95% Wald Confidence Limits			
Dist	0.889	0.846	0.934		
Year 2007 vs 2011	1.054	0.241	4.614		
Year 2008 vs 2011	1.023	0.202	5.165		
Year 2009 vs 2011	0.776	0.166	3.620		
Year 2010 vs 2011	0.820	0.165	4.069		
Quarter 1 vs 4	0.693	0.203	2.373		
Quarter 2 vs 4	1.115	0.355	3.498		
Quarter 3 vs 4	1.261	0.354	4.498		
Win_or_Loss L vs W	1.058	0.370	3.027		
Home_Away Away vs Home	2.100	0.831	5.306		

Analysis of Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept		1	6.1264	1.1168	30.0921	<.0001	
Dist		1	-0.1174	0.0252	21.7870	<.0001	
Year	2007	1	0.1280	0.4126	0.0963	0.7564	
Year	2008	1	0.0976	0.4648	0.0441	0.8337	
Year	2009	1	-0.1778	0.4275	0.1730	0.6774	
Year	2010	1	-0.1230	0.4736	0.0675	0.7950	
Quarter	1	1	-0.3598	0.4053	0.7882	0.3746	
Quarter	2	1	0.1150	0.3657	0.0989	0.7531	
Quarter	3	1	0.2384	0.4193	0.3232	0.5697	
Win_or_Loss	L	1	0.0282	0.2682	0.0111	0.9162	
Home_Away	Away	1	0.3709	0.2365	2.4610	0.1167	

CUSTOMER LOYALTY TEAM . Support You Can Count On

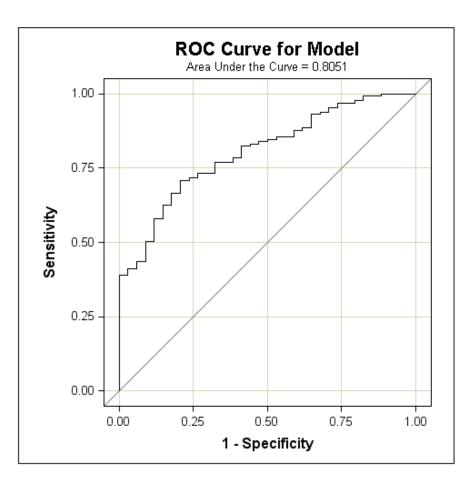
34

PROC LOGISTIC Output for Multiple Model

Is the model any good?

Association of Predicted Probabilities and Observed Responses					
Percent Concordant	80.5	Somers' D	0.610		
Percent Discordant	19.5	Gamma	0.610		
Percent Tied	0.0	Tau-a	0.201		
Pairs	4454	c	0.805		

Better or worse than the Simple Models?



CUSTOMER LOYALTY TEAM • Support You Can Count On

Stepwise Options

- Forward
- Backward
- Stepwise

Summary of Stepwise Selection									
	Effect			Number	Score	Wald		Variable	
Step	Entered	Removed	DF		Chi-Square		Pr > ChiSq		
1	Dist		1	1	27.8594		<.0001		

CUSTOMER LOYALTY TEAM · Support You Can Count On

Challenges

- Missing Value
- Errors and Outliers
- Massive Data size
- Operational vs. observational



It's Good!

CUSTOMER LOYALTY TEAM • Support You Can Count On

Public SAS Courses

- Statistics 1: Introduction to ANOVA, Regression, and Logistic Regression
- Predictive Modeling Using Logistic Regression
- Categorical Data Analysis Using Logistic Regression

Books

 <u>Logistic Regression Using SAS Theory and Application,</u> <u>Second Edition</u> by Paul D Allison

Online Tutorials

- Logistic Regression in SAS Enterprise Guide Example 1
- Logistic Regression in SAS Enterprise Guide Example 2

The one place for all your SAS Training needs. Support.sas.com/training

It's where you'll find the latest information on:

- New training courses and services
- Special offers and discounts
- The latest course schedules
- New training locations
- Events and conferences
- SAS certification news
- · And, much more.

Everything you need – in one place. Visit and bookmark it today.

CUSTOMER LOYALTY TEAM • Support You Can Count On Copyright © 2011, SAS Institute Inc. All rights reserved.

Thank you for using SAS!

